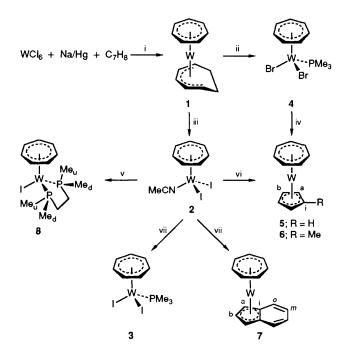
η-Cycloheptatrienyl Tungsten Chemistry


Malcolm L. H. Green* and Dennis K. P. Ng

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK

Reduction of WCl₆ with sodium amalgam in the presence of cycloheptatriene gives $[W(\eta-C_7H_7)(\eta-C_7H_9)]$, which is a precursor to the compounds $[W(\eta-C_7H_7)L_2_2]$, $[W(\eta-C_7H_7)L_2X]$, where L = tertiary phosphines or acetonitrile and X = halogen, $[W(\eta-C_7H_7)(\eta-C_6H_4R)]$, R = H, Me, and $[W(\eta-C_7H_7)(\eta-C_9H_7)]$.

The chemistry of η -cycloheptatrienyl-chromium and -molybdenum compounds is well documented,¹ whilst the chemistry of η -cycloheptatrienyltungsten compounds remains relatively unexplored.^{2–4} Most of the known η -cycloheptatrienyl-tungsten compounds are derived from [W(η -C₇H₇)(CO)₂I], which requires several steps to synthesise from the commercially available starting materials.³ Vacuum codeposition of tungsten atoms with cycloheptatriene gives [W(η -C₇H₇)(η -C₇H₉)] 1 but no further chemistry was reported.⁴ Recently, we have discovered a one-pot gram-scale preparation of [Mo(η -C₇H₇)(η -C₇H₉)] by reducing MoCl₅ with sodium amalgam in the presence of cycloheptatriene and demonstrated the synthetic utility of this compound.¹^e Here, we report the extension of these synthetic pathways to tungsten.

The key step is the direct synthesis of the compound $[W(\eta-C_7H_7)(\eta-C_7H_9)]$ 1 from WCl₆ in a one-pot reaction. A mixture of tungsten hexachloride (12 g) and an excess of cycloheptatriene in tetrahydrofuran (thf) (16 cm³ in 400 cm³) was treated with sodium amalgam (4.2 g Na in 50 cm³ of Hg) at -78 °C. The mixture was stirred and allowed to warm to room temperature over 3 h and stirred for a further 3 h. The volatiles were removed under reduced pressure, then the residue was extracted with light petroleum [b.p. 40–60 °C]. From the

Scheme 1 Reagents and conditions: i, gradual warming from -78 °C over 3 h in thf then at room temp. for 3 h, 27%, ii, Br₂ in thf at room temp. for 15 min then PMe₃ at room temp. for 2 h, 44%; iii, I₂ in MeCN at 80 °C for 3 h, 86%; iv, NaC₅H₄Me in thf at room temp. for 16 h, 60%; v, Na–Hg and Me₂PCH₂CH₂PMe₂ in thf, gradual warming from -60 °C over 2 h then at room temp. for 15 h, 22%; vi, NaC₅H₅ (or NaC₅H₄Me) in thf at room temp. for 20 h, 40% (or 80%); vii, PMe₃ in thf at room temp. for 1 h, 70%; viii, lithium indenide in thf at room temp. for 15 h, 25%

petroleum extract, 3 g of pure $[W(\eta-C_7H_7)(\eta-C_7H_9)]$ 1 could be isolated as a brown solid. The yield was 27%. In contrast to the molybdenum chemistry, no $[W(\eta-C_7H_8)_2]$ could be isolated.^{1e}

Treatment of 1 in acetonitrile with iodine gives dark-red crystalline $[W(\eta-C_7H_7)(MeCN)I_2]$ 2, which is a reactive precursor towards new organometallic compounds of tungsten. The MeCN ligand in 2 is labile and can be displaced by PMe₃ giving red crystals of $[W(\eta-C_7H_7)(PMe_3)I_2]$ 3. Oxidation of 1 in thf with bromine followed by addition of PMe₃ gives the compound $[W(\eta-C_7H_7)(PMe_3)Br_2]$ 4 as orange-brown crystals.

There is substantial evidence that the covalent bond formed between the η -C₇H₇ ligand and a transition metal requires three electrons from the metal. In which case the compounds **2–4** are d¹ compounds.⁵ All the room-temperature ESR spectra of dilute solution of compounds **2–4** in CD₃CN or thf exhibit a rather sharp absorption centred at g = 1.94-1.99 but no hyperfine coupling to ¹⁸³W and ³¹P was observed; lowering the temperature to 153 K only caused slight sharpening of the signals.

Treatment of **2** with sodium cyclopentadienide or sodium methylcyclopentadienide gives the compounds [W(η -C₇H₇)(η -C₅H₄R)], R = H **5** or Me **6**, in good yields. Compound **6** has also been prepared by treating **4** with sodium methylcyclopentadienide. The mixed sandwich compound **5** has been previously described but the synthesis gave a low yield.⁶ Similarly, the reaction of **2** with lithium indenide affords purple crystals of [W(η -C₇H₇)(η -C₉H₇)] **7**.

Reduction of **2** with sodium amalgam in the presence of $Me_2PCH_2CH_2PMe_2$ gives diamagnetic green compound $[W(\eta-C_7H_7)(Me_2PCH_2CH_2PMe_2)I]$ **8** in moderate yield.

All the new compounds 2-4 and 6-8 gave spectroscopic and analytical data in accordance with assigned structures.[†] The new reactions and the structures proposed are summarised in Scheme 1.

5: ¹H NMR (C₆D₆): δ 5.25 (s, 7 H, η -C₇H₇), 5.19 (s, 5 H, η -C₅H₅); ¹³C{¹H} NMR (C₆D₆): δ 82.5 (s, η -C₅H₅), 73.8 (s, η -C₇H₇). **6**: ¹H NMR (C₆D₆): δ 5.28 (br s, 2 H, H_a or H_b), 5.21 (s, 7 H,

6: ¹H NMR (C_6D_6): δ 5.28 (br s, 2 H, H_a or H_b), 5.21 (s, 7 H, η - C_7H_7), 5.16 (br s, 2 H, H_a or H_b), 1.76 (s, 3 H, Me); ¹³C{¹H} NMR (C_6D_6): δ 100.1 (s, C_i), 85.4 (s, C_a or C_b), 82.2 (s, C_a or C_b), 74.5 (s, η - C_7H_7), 16.0 (s, Me).

7: ¹H NMR (CD₃COCD₃): δ 7.29 [dd, *J*(H–H) 3.0, 6.4 Hz, 2 H, H_o or H_m], 6.77 [dd, *J*(H–H) 3.0, 6.4 Hz, 2 H, H_o or H_m], 6.08 [t, *J*(H–H) 2.4 Hz, 1 H, H_b]; 6.02 [d, *J*(H–H) 2.4 Hz, 2 H, H_a], 5.11 (s, 7 H, η-C₇H₇); ¹³C{¹H} NMR (C₆D₆): δ 128.4 (s, C_o or C_m), 121.2 (s, C_o or C_m), 101.8 (s, C_i), 88.9 (s, C_b), 75.9 (s, η-C₇H₇), 75.5 (s, C_a).

8: ¹H NMR (C₆D₅CD₃): δ 4.99 [t, *J* (H–P) 1.9 Hz, 7 H, η-C₇H₇], 1.61 [d, *J* (H–P) 8.0 Hz, 6 H, Me_u or Me_d], 1.12–1.36 (m, 2 H, H_u or H_d), 0.88 [d, *J* (H–P) 7.6 Hz, 6 H, Me_u or Me_d], 0.72–0.98 (m, 2 H, H_u or H_d); ¹³C{¹H} NMR (C₆D₅CD₃): δ 81.0 (s, η-C₇H₇), 31.7 [virtual t, *J* (C–P) 22.0 Hz, CH₂], 21.5 [virtual t, *J* (C–P) 17.1 Hz, Me_u or Me_d], 17.1–18.0 (m, Me_u or Me_d); ³¹P{¹H} NMR (C₆D₅CD₃): δ –7.9 [s, *J* (P–¹⁸³W) 346 Hz, Me₂PCH₂CH₂PMe₂].

Selected ESR data, $2: \langle g \rangle = 1.941$; line width 56 G in CD₃CN at 293 K. $3: \langle g \rangle = 1.988$; line width 53 G in thf at 153 K. $4: \langle g \rangle = 1.943$; line width 57 G in thf at 153 K.

[†] Satisfactory microanalyses have been obtained for all new compounds.

Selected NMR data: ¹H NMR at 300 MHz, ¹³C NMR at 75.5 MHz, and ³¹P NMR at 121.4 MHz.

J. CHEM. SOC., CHEM. COMMUN., 1992

In conclusion, we have described convenient gram-scale pathways to half-sandwich derivatives of the $W(\eta$ -C₇H₇) moiety.

We thank Dr A. Watts for assistance in ESR measurements and the Croucher Foundation of Hong Kong for a scholarship (to D. K. P. N.).

Received, 9th June 1992; Com. 2/03053E

References

 (a) G. Deganello, Transition Metal Complexes of Cyclic Polyolefins, Academic Press, London, 1979, pp. 9–45; (b) M. L. H. Green and R. B. A. Pardy, Polyhedron, 1985, 4, 1035; (c) J. S. Adams, C. Bitcon, J. R. Brown, D. Collison, M. Cunningham and M. W. Whiteley, J. Chem. Soc., Dalton Trans., 1987, 3049; (d) M. L. H. Green, P. A. Newman and J. A. Bandy, J. Chem. Soc.,

- 2 M. L. H. Green, D. K. Siriwardene, D. O'Hare and L.-L. Wong, J. Chem. Soc., Dalton Trans., 1988, 2851.
- 3 (a) R. B. King and A. Fronzaglia, *Inorg. Chem.*, 1966, 5, 1837; (b)
 Von R. Panter and M. L. Ziegler, *Z. Anorg. Allg. Chem.*, 1979, 453, 14; (c) R. Breeze, M. S. Plant, A. Ricalton, D. J. Sutton and M. W. Whiteley, *J. Organomet. Chem.*, 1988, 356, 343; (d) C. Bitcon, R. Breeze, P. F. Miller and M. W. Whiteley, *J. Organomet. Chem.*, 1989, 364, 181.
- 4 E. M. van Dam, W. N. Brend, M. P. Silvon and P. S. Skell, J. Am. Chem. Soc., 1975, 97, 465.
- 5 (a) C. E. Davies, I. M. Gardiner, J. C. Green, M. L. H. Green, N. J. Hazel, P. D. Grebenik, V. S. B. Mtetwa and K. Prout, J. Chem. Soc., Dalton Trans., 1985, 669; (b) J. C. Green, M. L. H. Green, N. Kaltsoyannis, P. Mountford, P. Scott and S. J. Simpson, Organometallics, 1992, in the press.
- 6 H. W. Wehner, E. O. Fisher and J. Muller, Chem. Ber., 1970, 103, 2258.